

FREMetar: Efficient and Flexible Metadata Rewriting

Kyle Olivo
Aparna Radhakrishnan
V. Balaji
Serguei Nikonov
GFDL

GO-ESSP 9th Workshop May 10th - 11th Asheville, NC

What is it?

- GFDL analogue to CMOR (Climate Model Output Rewriter)
- Originally operated on metadata only
- Natural extension of existing tools

```
netcdf wfo_Omon_GFDL-ESM2M_piControl_rlilp1_049601-050012 { // format variant: 64bit
dimensions:
    rlon = 360 ;
    rlat = 200 ;
    time = UNLIMITED ; // (60 currently)
    bnds = 2 ;
    vertices = 4 ;
variables:
    double rlon(rlon) ;
        rlon:long_name = "longitude in rotated pole grid" ;
        rlon:units = "degrees" ;
        rlon:axis = "X" ;
        rlon:standard_name = "grid_longitude" ;
    double rlat(rlat) ;
        rlat:long_name = "latitude in rotated pole grid" ;
        rlatitude in rotated pole grid" ;
```

What are the benefits?

- CMOR rewrites all data as well as metadata -- computationally costly
- Easier integration with post processing software (frepp) and other tools (FREratorMap)
- Centralization of all metadata information, automatic use of existing experiment XML information

What is the architecture?

What is stored in the database?

• Experiment details

	ူ exper_id	inner_name	outer_name	project_id
1	exper_id_7fm6cl8lJk	ESM2M_pi-control_C1	pre-industrial	ipcc_ar5

- Project details
 - o AR5, ACCMIP, CLIVAR, etc.
- Variable details

	<pre>project_id</pre>	💡 var_id	long_name	units	original_units	💡 inner_varname	💡 proj_varname
1	ipcc_ar5	3	Near-Surface Air	K	deg_k	t_ref	tas

- Project metadata
 - Institution, product, conventions, etc.

How is it designed?

- Written in Java
- MySQL
- Java NetCDF API
- NetCDF Operators
- Auxiliary NetCDF file
 (provides data regarding grid details, auxiliary coordinate variables, etc)

How is it used?

```
fremetar -d <dir> | --directory <dir> -e <exper id> | --experid <exper id>
     -z <realiz id> | --realizid <realiz id> -r <run id> | --runid <run id>
     Optional Parameters:
      [ -o <output dir> | --output <output dir> ] [ -c <configfile> | --config <configfile> ]
      [ -h | --help ] [ -v | --verbose ] [ -p | --preview ] [ -q | --quiet ] [ -a | --diag ]
      [ -s <db server> | --server <db server> ] [ -n <db name> | --name <db name> ] [ -f ]
                          Synopsis:
                                             --help
                            -h
                                             --verbose
                            - V
                                            --directory <dir>
                            -d <dir>
                                            --experid <exper id>
                            -e <exper id> |
                            -z <realiz id> |
                                            --realizid <realiz id>
                            -r <run id>
                                            --runid <run id>
                                             --time <t start>
                            -t <t start>
                                             --chunk <years>
                            -k
                            -o <out dir>
                                           | --output <out dir>
                            -c <configfile>| --config <configfile>
                                             --versioning
                            -i
                                             --preview
                            - p
                                             --diag
                            -a
                                            --quiet
                            -q
                            -m <v1,v2..>
                                            --variable <v1,v2..>
                            -y <t1,t2..>
                                            --table <t1,t2..>
                            -W
                            -s <dbserver>
                                            --server <dbserver>
                            -n <dbname>
                                             --name <dbname>
                            -f
```

How does it operate?

Migrate File to Disk Copy File to HPCS Copy file to Destination Determine if Data is Record Stats to DB Needed and Insert **Gather Statistics** Compare and Repair Metadata From DB Metadata From File

How does it support multiple standards?

- FREMetar is project independent
- Insert experiment XML
- Insert project specific metadata details (from MIP table)
- Create variable mappings
- Create proper metadata entries

What can we conclude?

- FREMetar utilizes existing strengths in GFDL's publishing architecture
- We should automate use of existing information repositories (MIP tables)
- The database centric workflow is powerful and flexible
- We can (and will) make the pipeline even stronger for future projects and the next assessment

Thanks!